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Abstract

Repeated surveys that rely on a rotating sample frame contain a short panel compo-
nent, which is prone to potentially non-ignorable non-response in the form of attrition
and reverse attrition (initial non-response followed by response). We start with a char-
acterization of the data generation process, remaining loyal to the rotation schedule,
and establish how the joint distribution of the multi-valued discrete outcome of inter-
est is affected by generalized attrition. We then propose a semi-parametric correction
model where weights expressed as suitable functions of outcomes in both periods fa-
cilitate adjustments to the joint distribution, so that it is consistent with marginals
obtained from unbiased cross-section data. We offer an empirical likelihood formula-
tion that permits estimation of the weights and tests of ignorability. The linear version
of our model has a closed form solution, a feature which renders our method com-
putationally attractive. We illustrate the utility of our model using a labor market
example, where the goal is estimation of transition probabilities between states (inac-
tive, employed, unemployed) that are consistent with published official cross-section
statistics.
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1 Introduction

Attrition has been a major concern in applied research based on panel data. The study by

Hausman and Wise (1979) constitutes an early attempt to model attrition as the outcome of

rational economic behavior that can systematically bias the findings based on the balanced

panel (subsample of non-attritors). As such the attrition problem is intimately related to

the class of problems collected under the title of selectivity (Heckman, 1987). Arguably the

simplest diagnosis of the attrition problem is provided by Ridder and Moffitt (2007), who

define a sample in which the probability of observation depends on the outcome variable(s)

of interest as a “biased sample” (p.5525). The preoccupation with attrition has a long

history among survey researchers (Madow et al., 1993). Formalizations by Rubin (1976)

and Little (1982) (collected in Little and Rubin, 1987) have paved the way for establishing

common terminology such as missing completely at random (which describes situations where

non-attrittors constitute a random subsample of the full sample) and ignorable attrition

(when attrition does not impart bias). Fitzgerald et al. (1998) situate these important ideas

within a regression framework familiar to economists, by distinguishing between selection

on observables and selection on unobservables, and clarifying the independence assumptions

needed for identification.

In this paper, we tackle non-response problems that arise in the short-panel components

of surveys relying on a rotating sample frame (also known as “rotating” panels, see Cantwell,

2008). Surveys with this feature – such as the Household Labor Force Survey (HLFS) in

Turkey we work with, as well as widely used data sets such as the Current Population Survey

(CPS) in the U.S., most country surveys included in the European Union Labor Force Survey

(EU-LFS) and the European Union Statistics on Income and Living Conditions (EU-SILC) –

call for repeat visits to the same address or dwelling according to a pre-determined schedule,

but limit the maximum number of visits.1 Residential addresses are visited according to the

rotation schedule whether or not any respondents were found in the previous visit. Conse-

quently, a rotating panel suffers not only from attrition (response followed by non-response)

but also from “reverse attrition” (non-response followed by response). Reverse attrition oc-

1This yields a dynamic sample frame whereby a given round of the survey contains units that are at

various points of their visit schedule. In each round a predetermined set of units visited for the last time

are dropped (rotated “out”) and replaced by a set of new randomly chosen units (rotated “in”), ensuring

nationwide representation as well as regular updating. Standard cross-section non-response adjustments

(based on demographics) are used to yield period specific marginal distributions, which may serve as the

source of published official statistics.
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curs because a subsequent visit sets the stage for the prospect of encountering returning

attrited units, new units (in place of the old ones), or new individuals at a previously visited

unit.

In the HLFS-Turkey 2000-2002 data we utilize, average quarterly attrition and reverse

attrition rates are respectively 10.4 (max 14.5) and 11.5 (max 15.8) percent. Annually, while

attrition rates average to 17.3 percent (max 19.7), reverse attrition rates average to 15.5

percent (max 16.2). These figures are by no means aberrations. Our calculations on the

2016-7 segment of the CPS reveal that attrition rates for visits that are three months apart

average to 10.2 percent (max 11.6), while reverse attrition rates average to 13.1 percent (max

14.9). For visits that are 12 months apart, both attrition and reverse attrition rates are 23.5

percent on average, with maximums of around 24.5 percent. Nicoletti and Peracchi (2005)

provide the survey participation patterns in the first five waves of the European Community

Household Panel across seven countries. Among those who participated in at least one wave

of the survey, the percent who reverse attrited at some point varies from 15.3 percent in

Ireland to 21.7 percent in Portugal.

Our semi-parametric “Non-ignorable Generalized Atttrition” (NGA) model adjusts the

balanced panel to account for the presence of “generalized attrition,” be it in the conventional

form of attrition, or reverse attrition, and contains improvements over existing approaches.

In a rotating panel initial period outcomes are observed for attritors (but not for reverse

attritors), whereas the subsequent period outcomes are observed for reverse attritors (but not

for attritors). This requires a symmetric treatment of the periods and alters the perception of

the nature of non-response present in forward looking panels that suffer only from attrition.

Using the distinction drawn in Fitzgerald et al. (1998), in the context of a forward-looking

panel it is possible to differentiate between selection on observables (non-ignorable non-

response attributable to known pre-attrition outcomes) versus unobservables (non-ignorable

non-response attributable to unknown pre-attrition outcomes). This distinction is apparently

lost in a rotating panel. Our formulation allows us to test whether generalized attrition is

ignorable with respect to the initial, or the subsequent period outcomes, or both. Put

differently, using the established terminology of Little and Rubin, we can test whether a

“missing at random” (MAR) assumption is realistic with respect to both observed and

unobserved outcomes in either adjoining period. Since the tests are based on the weights

attached to balanced panel cells, what the adjustments achieve and how the unadjusted

versions mislead us, become transparent. Our methodology resolves the ambiguity over

which set of weights are suitable for adjusting a balanced panel subjected to generalized
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attrition.

NGA model shares some of the key ideas in Hirano et al. (2001) which addresses attrition

problems in forward-looking panels. To address ignorability, Hirano et al. (2001) express the

probability of attrition as an additive function of outcomes in both periods, ruling out their

interactions, and use the inverted parametric attrition probabilities as weights. By equating

the row and column sums of the reweighed balanced panel cell counts (or fractions) to

the respective marginals, a just-identified system of equations is obtained. In a forward-

looking panel, data collected in the initial period are not subjected to reverse attrition, so

an unbiased estimate of the first round marginal is available. The unbiased marginal for

the follow-up period comes from an independently conducted cross-section survey (what

has been termed a “refreshment sample” by Ridder, 1992; an example of “external data”

as defined by Ridder and Moffitt, 2007). Our correction scheme for generalized attrition

preserves the reweighing logic in their paper, but differs in many other ways. To begin

with, instead of specifying the functional form of the generalized attrition probability and

inverting it to obtain the weights, we specify the weighting function directly, as a “suitable”

one-to-one transformation of an additive index function of the outcomes in the initial and

subsequent periods. Secondly, our estimation approach is distribution-free and does not

require imputations of unobserved outcomes as in Hirano et al. (2001). Thirdly, we begin

with a broader characterization of non-response (appropriate for rotating panels) before

we discuss the independence assumptions needed for identification. Finally, we situate the

estimation problem in an empirical likelihood framework and establish that conventional

methods of inference can be used for tests of the ignorability of generalized attrition.

In the linear version of the NGA model the parameters of the weighting function can be

estimated via a simple matrix manipulation. Since our treatment of exogenous variables is

completely non-parametric, our estimation approach is well-suited for tackling the need to

obtain dynamic estimates (joint or transition probabilities) consistent with the static cross-

section estimates (marginal probabilities). The data requirements for the implementation

of our methodology are extremely minimal: the joint frequency distribution obtained from

the balanced panel along with the marginal frequency distributions obtained from the rep-

resentative cross-sectional data in both periods. Naturally, our ability to compute proper

adjustment weights hinges on the availability of unbiased estimates of the marginals. Since

the data collection agency that conducts the repeated survey offers weights to render each

cross-section nationally representative, this amounts to having unbiased estimates of the

marginals for both periods. In our labor market application, these marginal distributions
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are used for computing the official published statistics.

The existing literature that deals with reverse attrition is sparse. Das (2004) builds

on Hausman and Wise (1979), and proposes a non-parametric selection model that allows

attrition in one period to be followed by reappearance later, in a multi-period panel set-up.

The connection between the outcome of interest and the attrition indicator is captured by

correlated random effects included in the error terms of the two equation model. Under the

assumption that probability of non-response depends solely on the outcome in that period,

Fitzmaurice et al. (2005) develop a pseudo-likelihood estimator for binary response models

for panel data that are subject to non-monotone missingness (what we term generalized

attrition). Deng et al. (2013) build on Hirano et al. (2001) and take into account what they

call non-terminal attrition, non-response that occurs in the second period of a three-wave

forward-looking panel followed by a response in the third period.2

A third type of non-response can occur when a unit designated for the rotating sample

frame is unobserved in both periods. While survey statisticians painstakingly differentiate

between different versions (Clarke and Tate, 1999) and try to document them (BLS, 2019,

Ch. 3-2; Cantwell, 2008), the usual practice is to treat non-participation (in the survey) as

being ignorable. Although we stick to this practice, we clarify the assumptions that justify

this approach and address the consequences of its violation. We remain loyal to the logic

of data collection subject to a rotating sampling frame, namely use the rotation schedule to

distinguish between intended and unintended non-response, explicitly state the independence

assumptions that are needed for identification, and address their suitability.

We illustrate the NGA model in the context of a labor market application, where the

objective is the estimation of transition rates between labor market states (employment,

unemployment, non-participation) that are consistent with official labor market statistics.

The findings from our empirical work establish that both attrition and reverse attrition

are non-ignorable. Simpler models nested under ours, whether attrition is ignorable with

respect to the first or the second period outcomes, are handily rejected. The magnitudes

2To the best of our knowledge, the term reverse attrition was first used by Gruber (1997, S93, fn. 23)

to acknowledge a potential limitation of his analysis due to omission of newly-formed firms in the second

period. In a similar vein, Alderman et al. (2001, 116, note 2; 118, note 10) used it to refer to the respondents

who were present in the second round but not the first round of a one-time survey. The terminology gained

recognition over time (e.g., Chetty and Saez, 2004; Kazianga et al., 2014; Bigelow et al., 2017; Bigelow and

Plantinga, 2017). Some recent papers use alternate terminology to describe the same phenomenon: Xie and

Qian (2012) use “intermittent attrition,” Hawkes and Plewis (2006) use “wave non-response,” Longford et al.

(2006), and Chaudhuri and Guilkey (2016) use “non-monotone non-response.”
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of the estimated adjustment weights underscore the perils of working with the unadjusted

balanced panel. Notably the adjustments to the balanced panel are found to be robust

to alternate transformations of the linear index function proposed by Chen (2001). This

establishes that the linear NGA model is adequate for rendering the short panel dimension

of widely available survey data usable.

The idea of reconciling observed flow data between states with the cross sectional stocks

via probabilistic adjustments expressed as a function of the states is present in earlier papers.

Abowd and Zellner (1985) and Stasny (1986, 1988) work with counts obtained from short

panels, and focus on estimating the sizes of gross flows from one period to another. The

contrasts between their approaches and our NGA model will be taken up in Section 3.3.

Although it is cast in an entirely different setting, the adjustment methodology discussed

by Golan et al. (1994) closely resembles our approach under the linear parameterization of

the weighting functions. The idea of imposing moment conditions obtained from external

data to render attrition-prone panel data usable is also present in Hellerstein and Imbens

(1999). In fact all these approaches can be situated within a broader framework directed at

reconciling key statistical features of incomplete survey data with what is known about the

population (Little, 1993). The model based adjustment proposed in Little and Wu (1991)

echoes the fundamental ideas exploited in our NGA model.

We begin our formal treatment in Section 2 by introducing our conceptualization of the

generalized attrition process and derive the NGA model that renders the balanced panel

usable. In Section 3 we discuss our semi-parametric estimation and inference methodology

in the context of a three-state labor market transition study. We then relate our approach

to others developed in the statistics literature. Section 4 contains empirical work on labor

market dynamics that illustrates the utility and simplicity of the proposed approach. We

conclude the paper with a brief summary of the key aspects of our model and its potential

uses.

2 NGA Model

The context of our model is a repeated survey directed to units (typically households) which

utilizes a rotational design, whereby each unit remains in the sample frame for a prede-

termined number of periods. Survey statisticians underscore several advantages: Firstly, a

repeated visit to the same household allows tracking of dynamics. Secondly, by limiting the

number of revisits, a better balance between the cost of the data collection effort and the
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response burden imposed on the households can be achieved. Thirdly, by including a fresh

subsample every period, the sample is kept up to date (Cantwell, 2008). Given these advan-

tages, rotating panel designs have emerged as a useful compromise between longitudinal and

repeated cross-section designs. However, use of the short panel component ushers in new

challenges when drawing inferences about the population. In fact the short panel embedded

in a repeated survey is often not fully exploited for want of weighting schemes consistent

with marginals used in obtaining the cross-sectional estimates.

Without loss of generality, we refer to the equally spaced rounds of data collection as

the first period and the second period. We distinguish between the complete panel (CP),

which includes all units intended for repeat visits, and the balanced panel (BP), which only

includes units who have been successfully interviewed in both periods. We also keep track

of units which are rotated out of the sample after period 1, and units which are rotated in

during period 2. Finally, for the sake of completeness we allow for non-participants, defined

as units which have been selected for inclusion in the sample frame, but never participated

in the survey.

The objects of the data collection effort may be classified as endogenous outcomes (y)

and exogenous covariates (x). Some of the exogenous covariates may serve as objects of

stratification (by location, for example). Others may identify subpopulations of interest (sex,

age, education, etc.). The endogenous outcome variables may be discrete, or continuous.

Our substantive application involves discrete outcomes, in which case the joint distribution

classifies individuals of a given type (x) according to a pair of multi-valued discrete outcomes

(y1, y2). In our example, y denotes labor market states. The primary objective of the

statistical agency is to produce period-specific statistical indicators based on y – such as

labor force participation rate, unemployment rate, etc. – conditional on x. Since y and x

serve as adequate identifiers of differences across individuals, in what follows we suppress

the observation subscript. We use subscripts to denote period-specific values of y, and treat

x as time invariant. The joint distribution of interest is f(y1, y2|x).

2.1 Assumptions

Our first task is to offer a characterization of the data generation process that exposes how

generalized attrition affects the balanced panel, the short panel component that captures

dynamics. As we proceed we also state and clarify the assumptions that the NGA model

rests on. We begin by defining several random variables to keep track of the observation

status of the unit within the interval under study. Some of these are predetermined in the
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sense that they are known before the survey reaches the field. Nonetheless we treat them

as random variables, associate probabilities with the outcomes, and state the independence

assumptions that enable us to examine the impact of generalized attrition formally. The

first random variable captures the rotation status of the address:

R =


1 if designated for out-rotation (w/prob. = δ1)

2 if designated for in-rotation (w/prob. = δ2)

3 if designated for the CP (w/prob. = δ3 = 1− δ1 − δ2)
. (2.1)

Units with R = 1 are those designated for their last visit in period 1 while those with

R = 2 are designated for their first visit in period 2. Units with R = 3 are those who have

been assigned to the complete panel (CP). This last group is the target of dynamic analyses.

The second random variable captures whether an intended interview took place during

the observation window:

S =

{
1 if at least one interview took place (w/prob. = φ)

0 if not (w/prob. = 1− φ)
. (2.2)

Assumption 1: R, (y1, y2), and S are mutually independent.

This assumption implies pairwise independence, i.e. (i) R ⊥ (y1, y2), (ii) S ⊥ R, (iii)

S ⊥ (y1, y2). Viewing the components in turn: (i) Since rotation status is predetermined,

the independence assumption between R and (y1, y2) is non-controversial. (ii) By ruling out

dependence between S and rotation status R, we disallow selective participation in the survey

because of the differential interview burden involved. (iii) The independence assumption

between S and (y1, y2) underscores the distinction between selective non-response that we

have to acknowledge (by virtue of having seen the unit at least once) and non-participation

we treat as being ignorable, the usual practice in the survey literature. In Section 2.5 we

show that this assumption is innocuous, in that it does not rule out non-ignorable attrition

in the balanced panel providing an interview took place (S = 1).

While R is an ex ante construct that captures the assigned participation status of a unit

in the sample frame, S is an ex post construct that indicates actual participation in the data

collection effort. Clearly only units with R = 3, S = 1 have the potential to contribute to

the identification of the joint distribution, f(y1, y2|x). Occurrence of the phenomena that

are of primary interest – attrition and reverse attrition – are revealed after both visits to the
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address are completed, according to the ex post construct:

A =


1 if observed in the 1st period only (attrited w/prob. = γ1)

2 if observed in the 2nd period only (reverse attrited w/prob. = γ2)

3 if observed in both periods (w/prob. = γ3 = 1− γ1 − γ2)
, given R = 3, S = 1.

(2.3)

Random variable A captures the possibly selective response status of participants among

the R = 3, S = 1 group during the observation window. The subsample with A = 3

constitutes the balanced panel (BP). By virtue of being present either in the first or the

second period, those with A = 1 (attrited unit) or A = 2 (reverse attrited unit) make

contributions to the marginal distribution of that period. The presence of the A = 2 group

is the distinguishing feature of rotating panels. Additional contributions to the marginals

come from participants not designated for the complete panel (R = 1 or 2) with whom the

intended interview took place (S = 1).

Assumption 2: External data on unbiased marginal distributions of interest, f ∗1 (y1|x)

and f ∗2 (y2|x), are available.

This is a key assumption in recovering the joint distribution of interest f(y1, y2|x) from

the possibly biased estimates f(y1, y2, A = 3|x) obtained from the BP. In Section 2.3, we

discuss different practical ways of using the data collected in a typical rotating panel to

produce the marginals.

2.2 Identification problem

In this subsection we suppress the conditioning on x for brevity, and use the random variables

R and S to index the respective supports. With these simplifications at hand, we express

the joint distribution of interest as

f(y1, y2) = ΣRΣSf(y1, y2, R, S), (2.4)

and analyze the components one by one. We begin with non-participants, S = 0. Here and

below we use Bayes’ Theorem to isolate the joint distribution function of interest and then
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simplify the expressions step by step, by imposing Assumption 1.

f(y1, y2, R = r, S = 0) = Pr(R = r, S = 0|y1, y2)f(y1, y2)

= Pr(R = r, S = 0)f(y1, y2)

= Pr(R = r)Pr(S = 0)f(y1, y2)

= δr(1− φ)f(y1, y2), r = 1, 2, 3. (2.5)

We turn to participants (S = 1) next, and examine those who were not designated for

the complete panel (R = 1 or 2). These units consist of those who were rotated out, and

those who were rotated in.

f(y1, y2, R = r, S = 1) = Pr(R = r|y1, y2, S = 1)f(y1, y2, S = 1)

= Pr(R = r|y1, y2, S = 1) Pr(S = 1|y1, y2)f(y1, y2)

= Pr(R = r) Pr(S = 1)f(y1, y2)

= δrφf(y1, y2), r = 1, 2. (2.6)

To obtain the final form of the expressions given in equations (2.5) and (2.6), we used the

notation adopted in equations (2.1) and (2.2).

The individuals who were designated for the complete panel and were interviewed consist

of three subgroups:

f(y1, y2, R = 3, S = 1) = ΣAf(y1, y2, R = 3, S = 1, A) (2.7)

For subgroups A = 1, 2 we get:

f(y1, y2, R = 3, S = 1, A = a) = Pr(A = a|y1, y2, R = 3, S = 1)f(y1, y2, R = 3, S = 1)

= Pr(A = a|y1, y2, R = 3, S = 1) Pr(R = 3, S = 1|y1, y2)f(y1, y2)

= Pr(A = a|y1, y2, R = 3, S = 1) Pr(R = 3, S = 1)f(y1, y2)

= Pr(A = a|y1, y2, R = 3, S = 1) Pr(R = 3) Pr(S = 1)f(y1, y2)

= Pr(A = a|y1, y2)δ3φf(y1, y2), a = 1, 2. (2.8)

To obtain the last line in equation (2.8), we used the notation introduced in equations (2.1)

and (2.2) together with the fact that A denotes mutually exclusive subsets of {R = 3, S = 1}.
Note that Pr(A = 2|y1, y2) captures the influence of non-ignorable non-response in the first

period (reverse attrition) and as such plays a key role for the identification of the NGA model

compared to model based approaches that focus on attrition in forward looking panels.
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Turning to the A = 3 subgroup, we proceed in similar fashion, albeit with a different set

of conditioning arguments:

f(y1, y2, R = 3, S = 1, A = 3) = f(y1, y2|R = 3, S = 1, A = 3) Pr(R = 3, S = 1, A = 3)

= f(y1, y2|R = 3, S = 1, A = 3) Pr(A = 3|R = 3, S = 1)

×Pr(R = 3, S = 1)

= f(y1, y2|A = 3)γ3δ3φ. (2.9)

It is straightforward to see that f(y1, y2|A = 3) can be identified non-parametrically from

the balanced panel. Since the balanced panel consists of the subset of individuals who have

been subjected to attrition or reverse attrition, in general f(y1, y2|A = 3) 6= f(y1, y2).

Substitution of the terms we derived – via the manipulations in equations (2.5), (2.6),

(2.8), and (2.9) – for the components on the right hand side of equation (2.4) yields:

f(y1, y2) = δ1(1− φ)f(y1, y2) + δ2(1− φ)f(y1, y2) + δ3(1− φ)f(y1, y2)

+δ1φf(y1, y2) + δ2φf(y1, y2) + Pr(A = 1|y1, y2)δ3φf(y1, y2)

+Pr(A = 2|y1, y2)δ3φf(y1, y2) + f(y1, y2|A = 3)γ3δ3φ. (2.10)

Upon collecting terms, simplifying and rearranging we get

f(y1, y2) =
f(y1, y2|A = 3)γ3

[1− Pr(A = 1|y1, y2)− Pr(A = 2|y1, y2)]
. (2.11)

Finally, using the fact that
∑

A Pr(A|y1, y2) = 1, we get

f(y1, y2) =
f(y1, y2|A = 3)γ3
Pr(A = 3|y1, y2)

. (2.12)

The last equation looks like the key equation of the AN model of Hirano et al. (2001,

p.1647), except our balanced panel also suffers from non-ignorable non-response in the first

period (reverse attrition). Hirano et al. (2001) non-parametrically identify their version of γ3,

the fraction of retained individuals when the sample is only subject to attrition, then specify

the probability in the denominator of their version of the equation (2.12) as a parametric

function of (y1, y2). We follow a different strategy and treat γ3 as a nuisance parameter.3

We then rescale the probability in the denominator of the equation (2.12) and obtain:

f(y1, y2) = w(y1, y2)f(y1, y2|A = 3), (2.13)

3As we establish in our empirical likelihood framework, the component that contains γ3 = Pr(A = 3|R =

3, S = 1) becomes separable.
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where w(y1, y2) = γ3/Pr(A = 3|y1, y2) > 0 by construction. Balanced panel fractions non-

parametrically identify f(y1, y2|A = 3). NGA model will emerge fully in the next section

when we parameterize w(y1, y2) and establish the identification of f(y1, y2). Additional

restrictions on w(y1, y2) needed for practical implementation are taken up in the empirical

section.

2.3 Identification using external data

Equation (2.13) has a form which is familiar to survey data users. Once the function w(y1, y2)

is estimated (for a given x), it can be used to inflate/deflate (i.e., reflate) the cells of the

balanced panel so that the object of interest f(y1, y2|x) can be recovered. To pave the way

for estimation, we mimic the approach in Hirano et al. (2001). For a given x, we express

w(y1, y2|x) as a suitable transformation of an additive linear index function of the endogenous

outcomes in both periods, i{β|y1, y2, x}, where β denotes the unknown parameter vector.

Until now our treatment of f(y1, y2) and derivation of the key equation (2.13) has been

general. Since our substantive application involves discrete outcomes, we supply the details

for that case. Clearly continuous variables can be subsumed within our framework by break-

ing them into mutually exclusive ranges, then assigning discrete labels to them. In fact,

an unknown continuous distribution will be approximated by a discrete distribution in a

typical application. Suppose y has K distinct values (or ranges, if continuous). Exploiting

the constraints that link the balanced panel with externally obtained marginals, f ∗1 (y1|x)

and f ∗2 (y2|x), and restoring the conditioning on covariates x, we obtain:

∑
y2

f(y1, y2|x) =
∑
y2

w(i{β|y1, y2, x})f(y1, y2|A = 3, x) = f ∗1 (y1|x), (2.14)

∑
y1

f(y1, y2|x) =
∑
y1

w(i{β|y1, y2, x})f(y1, y2|A = 3, x) = f ∗2 (y2|x). (2.15)

Equations (2.14) and (2.15) provide the restrictions that must be satisfied by the re-

flated balanced panel fractions where w(i{β|y1, y2, x})′s serve as the reflation factors. Since∑
y1

∑
y2
f(y1, y2|x) = 1, for K ≥ 2 the marginals provide 2K − 1 pieces of independent

information. Thus the K2 reflation factors can have at most 2K − 1 unknown parameters.

We take one (y1, y2) combination as the reference group and express i{β|y1, y2, x} as a linear

function of 2K − 1 main effects, so that dim(β) = 2K − 1. To assess the role of our para-

metric assumptions further, we follow Chen (2001) and entertain three different one-to-one

transforms of the index function, respectively the identity function (which we term the linear
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NGA model), plus suitable convex and concave functions. Details will emerge in Section 3.

Since additivity in main effects is assumed, the identification proof in Hirano et al. (2001),

as well as the simpler version in in Bhattacharya (2008) still apply. Nonetheless, in the

Appendix, we provide another proof in the context of the linear NGA model.

In a short panel data collection effort that relies on a rotating sample frame, both margins

have to be estimated with the help of external data. Conveniently the rotating sample frame

that supports the short panel also provides additional information on the marginal distribu-

tions. These come from two sources: units which are rotated out, and units which are rotated

in. In the HLFS-Turkey – which calls for four visits to an address over a period of 18 months

– units subjected to rotation constitute about one-half of all units interviewed in a given

cross-section. Technically units rotated in for the first time (about a quarter of the full sam-

ple) constitute a refreshment sample, so unbiased estimates of the period-specific marginals

can be obtained (Ekinci, 2007). Since our ultimate objective is to produce transition es-

timates consistent with the published labor market statistics (namely the period specific

labor force participation rate, employment and unemployment rates), we do not pursue that

route. Indeed, data collection agencies (BLS, EUROSTAT, in our case TURKSTAT) use all

the cross-section data to arrive at the official statistics. Thus in our labor market example

the marginal distributions we rely on are the (properly weighted) cross-sectional statistics

published by TURKSTAT. The point of Assumption 2 is to emphasize the need to use data

other than what is available in the balanced panel.

2.4 Tests of ignorability of attrition

In a forward-looking panel which is subjected to attrition in the second round, first period

outcomes are always observed while second period outcomes are unobserved for attritors.

As a result, one can conveniently test whether attrition behavior can be viewed as selection

on observables, or unobservables (using the distinction drawn in Fitzgerald et al., 1998),

rather than both. This mapping between periods and observation status does not apply

to the short panel component of a survey that relies on a rotational design, the case we

study. In our more general setting first period outcomes which are observed for attritors are

unobserved for reverse attritors, whereas second period outcomes which are unobserved for

attritors are observed for reverse attritors. In the NGA model it is straightforward to test

whether attrition is ignorable with respect to the first, or the second period outcomes, but

the test outcomes do not provide information on whether observables or unobservables are

at work.
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For brevity we suppress the conditioning on x, and examine in turn the restrictions on the

NGA model weights w(y1, y2) that produce special models of attrition and reverse attrition.

We also link these with earlier models.

(a) If non-response is ignorable, w(y1, y2) = 1 for all (y1, y2) combinations. This is the

case dubbed as Missing Completely at Random (MCAR) by Rubin (1976).

(b) If non-response is a function of observed outcomes only, w(y1, y2) = w(y1) for attritors,

and w(y1, y2) = w(y2) for reverse attritors. Using the partition given in equation (2.3), we

can express the restriction as w(y1, y2) = α ∗ w(y1) + (1 − α) ∗ w(y2), where α denotes the

share of attritors among the set of attritors (A = 1) and reverse-attritors (A = 2).

In the context of a regular panel that is subjected to attrition but not reverse attrition,

α = 1 and w(y1, y2) = w(y1). That is, weights are expressed solely as a function of observed

first period outcomes. This is the case popularized by Little and Rubin (1987), and has been

dubbed Missing at Random (MAR). In a short panel context it would seem that a similar

logic can be applied to reverse-attritors, using the observed outcomes for the second period.

Unfortunately in a K state NGA model, this would imply 2K parameters, one more than

what can be identified.

(c) If non-response is a function of unobserved outcomes only, w(y1, y2) = w(y2) for

attritors, and w(y1, y2) = w(y1) for reverse-attritors. Using the notation in (b), we can

express the restriction as w(y1, y2) = (1− α) ∗w(y1) + α ∗w(y2). In a regular panel without

reverse attrition, w(y1, y2) = w(y2). That is, weights are a function of unobserved second

period outcomes only. Hirano et al. (2001) call this the Hausman and Wise (HW) model

because a correction based on the unobserved second period outcomes was first proposed

by Hausman and Wise (1979), in the context of a two-period forward-looking panel. In

a short panel context, reverse-attritors are unobserved in the first period. As in case (b)

the correction logic can be extended to reverse attritors, but the model yields one more

parameter than what can be identified using the 2K − 1 available restrictions.

Strictly speaking neither Hausman and Wise (1979) nor Little and Rubin (1987) address

the problem of identification of the joint distribution. Fitzgerald et al. (1998) contrast the

two approaches (HW and MAR) using selection terminology popular among economists.

They point out that while selection in the MAR model is on (first period) observables,

selection in the HW model is on unobservables that include second period outcomes. As our

discussion under (b) and (c) shows, if the observable/unobservable distinction is applied to

the characterization of attrition and reverse attrition behavior encountered in a short panel

context, the rigid mapping between periods and observability, present in HW, MAR and
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consequently in Hirano et al. (2001), cannot be sustained. Furthermore it is not feasible to

estimate these models.

Upon dropping the observable/unobservable distinction, we obtain two models nested

under the NGA model that can be estimated:

(d) If non-response is a function of first period outcomes only, w(y1, y2) = w(y1) for both

attritors and reverse attritors.

(e) If non-response is a function of second period outcomes only, w(y1, y2) = w(y2) for

both attritors and reverse attritors.

What remains to be done is to attach labels to approaches (d) and (e). Taking cue

from Little and Rubin (1987), these respectively assume that non-response is ignorable with

respect to period 2 and period 1 outcomes. We therefore call them MAR2 and MAR1, using

the convention that selection is assumed to be ignorable with respect to the period indexed

by the suffix.

2.5 S ⊥ (y1, y2) revisited

Before we proceed with a detailed examination of our estimation procedure, we return to

our derivations and offer some observations about the role of the independence assumption

between S and (y1, y2), implied by Assumption 1. The derivations in Section 2.2 reveal a

remarkable difference in the handling of units designed for the complete panel and the rest.

While the terms that rescale f(y1, y2) in equations (2.5) and (2.6) are exogenous probabilities,

in equation (2.8) endogenous probabilities are present. Given the partition in equation (2.3),

the statement that attrition is ignorable amounts to Pr(A = 1|y1, y2) = γ1, a constant.

Likewise the statement that reverse attrition is ignorable amounts to Pr(A = 2|y1, y2) = γ2.

If we were to apply this language for the other designations, we have essentially assumed that

rotation status (given in equation (2.1)) and interview status (survey non-participation, given

by equation (2.2)) are ignorable. Arguably the only potentially controversial assumption

we make – which is also the usual practice in the attrition correction literature – is the

ignorability of survey non-participation (units that were selected for inclusion in the rotating

sample frame, but did not participate in both periods). Note, however, that φ = Pr(S = 1)

cancels out during the algebraic manipulations that led to equation (2.12). Even if we

were to assume non-ignorable non-participation, that is let Pr(S = 1|y1, y2) = φ(y1, y2)

in equation (2.6), this term would drop out as we move from equation (2.10) to (2.11).

Unlike attritors and reverse attritors, survey non-participants do not make any contribution

whatsoever to the data collection effort – either in the first period, or in the second period.
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As such, survey non-participants do not have the same potential to distort the balanced

panel. This line of thinking suggests that ignorability is a reasonable assumption in the case

of non-participation.

From a practical point of view, random variable S keeps track of practical survey imple-

mentation problems. These typically include (a) encountering the wrong unit (for example,

an establishment rather than a household) at the address, (b) inability to contact the unit in

any round, and (c) refusal of participation in the survey by the unit (Clarke and Tate, 1999).

Based on information obtained from the data collection agency, non-response of type (c),

refusal to participate, is uncommon in the HLFS-Turkey, attributable to the the law that

obliges participation in official surveys. Non-response due to (a) and (b) are more common.

If (a) occurs during the initial visit, the address is simply dropped from the sample frame.

The most frequently recorded reason for type (b) non-response is “the household no longer

resides at this address.”

3 Estimation and Inference in NGA Model

We illustrate the utility of the NGA model by applying it to a case where y is a multiple

valued random variable that captures labor market status and takes one of three values

(0 = non-participant, 1 = employed, 2 = unemployed). In this case the equation system

(2.14)-(2.15) yields five independent equations, so we can estimate up to 5 parameters. We

express w(y1, y2|x) as a function of a linear index in (y1, y2) and use indicators for distinct

labor market states. We take the individuals who are not in the labor force in both periods

(y1 = 0, y2 = 0) as our reference category and define the linear index as:

i(y1, y2|x) = µ+ρ1I(y1 = 1)+ρ2I(y1 = 2)+κ1I(y2 = 1)+κ2I(y2 = 2) ≡ i(β|y1, y2, x), (3.1)

where I(.) denotes the indicator function and β = [µ ρ1 ρ2 κ1 κ2]
′. This additive function of

the unknown parameters captures the dependency of non-response attributable to attrition

and reverse attrition on the labor market states (y1, y2). As in Hirano et al. (2001), we rule

out interactions and focus on the main effects of the labor market states. In our empirical

work, we use three parametric forms for the reflation factor: (a) linear: wL(y1, y2|x) =

i(β|y1, y2, x), (b) convex: wX(y1, y2|x) = exp {i(β|y1, y2, x)}, and (c) concave: wE(y1, y2|x) =

2 − exp {i(β|y1, y2, x)}. Note that w(y1, y2) = 1 iff µ = 1, ρ1 = ρ2 = κ1 = κ2 = 0 in the

linear case. In the non-linear cases, w(y1, y2) = 1 iff µ = ρ1 = ρ2 = κ1 = κ2 = 0.

For the linear case the restrictions imposed via equations (2.14)-(2.15) can be represented

as in Table 1. Here pjk = f(y1 = j, y2 = k|C = 3, x), j, k = 0, 1, 2. The task amounts to
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finding the reflation factors (functions of β) that adjust the balanced panel fractions – so

that the adjusted cell probabilities are in line with the marginals obtained externally. Ekinci

(2007) used the subsamples from the two cross-sections, namely the units that were rotated

in. These constitute approximately 25% of the cross-section sample. In the current version

we use the official statistics (reported by TURKSTAT) which rely on the full cross-section

sample where the marginal distributions are obtained by a MAR type weighting scheme.

Table 1: A 3×3 Linear NGA Model

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0 µp00 (µ+ κ1)p01 (µ+ κ2)p02 f ∗1 (0)

y1 = 1 (µ+ ρ1)p10 (µ+ ρ1 + κ1)p11 (µ+ ρ1 + κ2)p12 f ∗1 (1)

y1 = 2 (µ+ ρ2)p20 (µ+ ρ2 + κ1)p21 (µ+ ρ2 + κ2)p22 f ∗1 (2)

Col. sum f ∗2 (0) f ∗2 (1) f ∗2 (2) 1

Let pj• =
∑2

k=0 pjk, j = 0, 1, 2 and p•k =
∑2

j=0 pjk, k = 0, 1, 2. It can be shown that this

system of equations is observationally equivalent to the representation given below:

p0• 0 0 p01 p02

p1• p1• 0 p11 p12

p2• 0 p2• p21 p22

p•0 p10 p20 0 0

p•1 p11 p21 p•1 0

p•2 p12 p22 0 p•2





µ

ρ1

ρ2

κ1

κ2


=



f ∗1 (0)

f ∗1 (1)

f ∗1 (2)

f ∗2 (0)

f ∗2 (1)

f ∗2 (2)


(3.2)

Inspection reveals that this six-equation system is of the form Aβ = b where rank(A :

b) = 5. One of the constraints is redundant, in the sense that it is automatically met once

the solution to the reduced system is found. We prove this in the Appendix by starting

with a particular system of five equations in five unknowns, and showing that any other

representation can be transformed to the one we start with by a simple pivoting operation.

Consequently, the solution to the reduced five-equation system is unique and does not depend

on which constraint is left out. If we were to exclude the last constraint, we would obtain

the five-equation system which can be represented in matrix notation as A6β = b6, where

subscripts denote the fact that the 6th constraint has been excluded. Written explicitly we
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get equation (3.3). 

p0• 0 0 p01 p02

p1• p1• 0 p11 p12

p2• 0 p2• p21 p22

p•0 p10 p20 0 0

p•1 p11 p21 p•1 0





µ

ρ1

ρ2

κ1

κ2


=



f ∗1 (0)

f ∗1 (1)

f ∗1 (2)

f ∗2 (0)

f ∗2 (1)


. (3.3)

The unique solution to this just-identified system is β̂ = A−1
6 b6. While a closed form solu-

tion is available for the linear version, this is not the case when non-linear transforms of the

index function are used. It is possible to obtain numerical solutions as long as the transform

is one-to-one.

3.1 Empirical Likelihood

Although we established that the linear NGA model has an exact solution, derivation of

the asymptotic covariance matrix of the estimated parameters requires additional work.

Since the maximum likelihood (ML) approach has the advantage of producing a consistent

estimate of this matrix, we employ it in the context of our example and relate it to our

earlier discussion. Given the nature of the outcome variable, the distribution in Table 1

can be characterized via an empirical probability mass function. Towards that end, we first

reparameterize the cell probabilities as shown in Table 2.

Table 2: Reparameterized 3×3 Linear NGA Model

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0 θ00 θ01 θ02 f ∗1 (0)

y1 = 1 θ10 θ11 θ12 f ∗1 (1)

y1 = 2 θ20 θ21 θ22 f ∗1 (2)

Col. sum f ∗2 (0) f ∗2 (1) f ∗2 (2) 1

Next, let njk denote the number of observations in cell (j, k) of the balanced panel,

j, k = 0, 1, 2. These are related to pjk’s via pjk = njk/N , where N denotes the number

of observations in the balanced panel. Using the reparameterized cell probabilities, the

empirical likelihood function for the linear version may be expressed as:

L(θ) =
∏

i,j=0,1,2

{θij}nij . (3.4)
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Maximization will be done subject to the adding up constraints, equations (2.14)-(2.15),

which together with equation (3.1) imply equation (3.3). The standard approach would

entail embedding an appropriate Lagrangian function in the log-likelihood function which

may be expressed as:

lnL(θ,λ) =
∑

i,j=0,1,2

nijln{θij} − λ1 [(θ00 + θ01 + θ02)− f ∗1 (0)]

−λ2 [(θ10 + θ11 + θ12)− f ∗1 (1)]− λ3 [(θ20 + θ21 + θ22)− f ∗1 (2)]

−λ4 [(θ00 + θ10 + θ20)− f ∗2 (0)]− λ5 [(θ01 + θ11 + θ21)− f ∗2 (1)] . (3.5)

It can be shown that the F.O.C.’s with respect to the parameter vector β′ = [µ ρ1 ρ2 κ1

κ2] yield the following system of equations:

Bλ = Cd(β), (3.6)

where λ denotes the 5× 1 vector of Lagrange multipliers,

B =



p0• p1• p2• p•0 p•1

0 p1• 0 p10 p11

0 0 p2• p20 p21

p01 p11 p21 0 p•1

p02 p12 p22 0 0


, (3.7)

C =



1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1


, (3.8)

and

d(β) =



µ−1n00

(µ+ κ1)
−1n01

(µ+ κ2)
−1n02

(µ+ ρ1)
−1n10

(µ+ ρ1 + κ1)
−1n11

(µ+ ρ1 + κ2)
−1n12

(µ+ ρ2)
−1n20

(µ+ ρ2 + κ1)
−1n21

(µ+ ρ2 + κ2)
−1n22



. (3.9)
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Equation (3.9) serves to illustrate the key implication of our identifying assumption: the

9×1 vector θ that adjusts the cell probabilities is a function of the 5×1 unknown parameter

vector β. It is straightforward to show that the 5 × 5 matrix B – which happens to be a

function of the balanced panel cell fractions – is invertible, by virtue of the fact that it is

equal to the transpose of matrixA6 defined above, the square matrix in the reduced equation

system (3.3). This establishes that the log-likelihood function can be concentrated using

λ = B−1Cd(β). (3.10)

Thus the 10 parameter constrained optimization problem (in terms of unknowns β and λ)

is equivalent to an appropriately transformed 5 parameter optimization problem, where the

Lagrange multipliers are expressed as explicit functions of the 5 × 1 unknown parameter

vector, β.

3.2 Generalization

Generalization to K categorical outcomes is straightforward. Let fjk = f(y1 = j, y2 = k),

pjk = f(y1 = j, y2 = k|A = 3, x), and w(y1, y2) = wjk with j, k = 1, ..., K. Equation (2.13)

may be rewritten as:
fjk
pjk

= wjk. (3.11)

Using the definition in equation (3.1), we may express the linear case as:

fjk
pjk

= i(β|y1, y2, x). (3.12)

The convex version may be written as:

ln

(
fjk
pjk

)
= i(β|y1, y2, x). (3.13)

The concave version may be written as:

ln

(
2− fjk

pjk

)
= i(β|y1, y2, x). (3.14)

The general form of the 2K × (2K − 1) matrix A, the (2K − 1) × 1 vector β, and

the 2K × 1 vector b are easily discerned. We know that the linear case is additive in the

unknown parameters, so the extension of the uniqueness proof given above for K = 3 is

straightforward. In the non-linear versions, a known invertible monotonic function h(.) of

the ratio
fjk
pjk

(where pjk is known) is additive in the unknown parameters. This link between
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the non-linear cases and the linear case suggests that the solutions to the non-linear cases are

also unique. Clearly, systems (3.12), (3.13), and (3.14) will yield different estimates of the

unknown β. Note that ultimately the quantities of interest are not the β’s but the weights

used in rescaling, defined by wL(y1, y2|x) = i(β|y1, y2, x), wX(y1, y2|x) = exp {i(β|y1, y2, x)},
and wE(y1, y2|x) = 2− exp {i(β|y1, y2, x)}. Thus investigation of the sensitivity of the NGA

model estimates to the parametric assumptions hinges on comparison of the wS(j, k|x),

j, k = 0, 1, .., K − 1 for S = L, X, E. It is straightforward to modify equation (3.5) and

pursue maximum empirical likelihood estimation of the non-linear cases.4

3.3 Discussion

Apart from the choice of the functional form for w(.), our procedure is fully non-parametric.

We propose treating each distinct x as a separate stratum, and repeating the estima-

tion/inference exercise.

At this point it is appropriate to provide an account of how our adjustment procedure

relates to/differs from existing methods proposed in papers we view as being “close” to ours.

As mentioned earlier, Abowd and Zellner (1985) and Stasny (1986, 1988) deal with the same

substantive issues in the short panel context, but work with counts. These papers do not

offer a formal model of the possibly non-ignorable non-response process. The goal is stated

as estimating period-to-period gross flows – pjk’s in our model. Abowd and Zellner (1985)

use a multiplicative model to inflate the unadjusted proportions. The idea is that unmatched

individuals who show up in one of the margins have some probability of being in a given

cell of the joint distribution. The easiest way to relate their model to ours is to focus on

equation (3.13) above. They essentially express the natural logarithm of the reflation factor

defined in equation (3.11) above as a linear function of the natural logarithms of the counts of

unmatched individuals. Using our own language to establish the links, unmatched individuals

can either be attritors (observed only in the first period) or reverse attritors (observed only in

the second period), plus an approximation error, ensuring that the adjusted cell proportions

sum to one. Like us (see Section 4 below) they study three states (nine cells in the flow

matrix), but estimate 18 unknown parameters subject to six adding up restrictions that link

(the rows and columns of the matrix of) proportions with the respective margins. Thus, they

not only allow interaction effects but also distinguish between attrition and reverse attrition

parameters. Leaving the difference introduced by the use of counts aside, this would be

equivalent to using an index function that exhausts all K×K cells via an indicator function

4The MATLAB code used in our empirical work is available from the authors upon request.
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I(y1, y2) and has separate parameters for attrition (ξjka ) and reverse attrition (ξjkr ) on the

right hand side of equation (3.13) in place of our own (3.1):

i(y1, y2|x) =
K∑
j=1

K∑
k=1

(ξjka + ξjkr )I(y1 = j, y2 = k) ≡ i(ξ|y1, y2, x). (3.15)

Clearly this over-parameterized model cannot be used to implement separate adjustments

for each period pair. Abowd and Zellner (1985) assume stationarity and use multiple rounds

of the monthly CPS data to estimate “average” values of the parameters by minimizing the

weighted squared deviation of the adjusted gross flow margins from the period specific CPS

data.

Stasny (1986, 1988) has a similar set-up, except she uses additive models to implement

the adjustment. According to her conceptualization, an observation designated for the two-

period panel can lose either its column or row designation, with different probabilities, and

show up in one of the margins. In terms of the distinction we draw, these are respectively

attrition and reverse attrition probabilities. Thus Stasny’s approach is equivalent to use of a

more complicated linear function of the labor market states on the right hand side of equation

(3.12). In fact her unconstrained model has the same number of free parameters as Abowd

and Zellner (1985), so equation (3.15) can be used to capture the link with the NGA model.

Unlike Abowd and Zellner (1985), Stasny (1986) shies away from a stationarity assumption

and estimates different constrained models that can be identified with the available adding

up constraints. In particular (like us) she sets the interaction effects to zero (ξjka = ξjkr = 0 if

j 6= k). In her richest (just identified) models she expresses the attrition and reverse attrition

probabilities as functions of either the observed, or unobserved states. Since attritors are

observed in the first, and reverse attritors are observed in the second period, in a given panel

the sum of the two probabilities is able to capture dependence on states in both periods. In

terms of the nesting designations given in Section 2.4, these are similar to models (b) and (c)

which cannot be identified in the NGA model. Stasny is able to identify her version because

she uses counts, and there are K restrictions to work with. Although the treatment of non-

response in her just identified models has the same flavor as our NGA model, her models

allow dependence either on observed, or on unobserved states; not both. Thus MAR1-MAR2

distinction cannot be drawn. Stasny estimates many two-period models on multiple rounds

of data from the Canadian LFS and the CPS. Her empirical findings provide ample evidence

against the stationarity assumption of Abowd and Zellner (1985).

There is a well-established line of research in the statistical literature which is directed

at the important distinction between the sampled and the target population, and on meth-
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ods used in reconciling them (Madow et al., 1993). Little (1993) refers to adjustments of

data obtained from surveys (i.e., sampled population) using aggregate data on the (target)

population obtained from other sources as “post-stratification.” The bulk of his paper is

concerned with the case when the population joint distribution of the post-stratification

variables is known. He briefly discusses a case which is of special interest for us: only the

marginal population distributions of the post-stratification variables are known. When non-

response is present, the joint distribution of the post-stratification variables in the sample

is not adequate for estimation (unless MCAR or MAR is assumed). This case is covered at

length in Little and Wu (1991) where a formal model for non-response is given. Notably

they address the identification issue and show that a model in which the response probabil-

ity is expressed as a product of row and column effects is just identified. They propose an

iterative method (raking) for estimation of this model. This version of the post-stratification

exercise is intimately connected with the AN/NGA approach. Instead of the additive model

that drives the correction in AN/NGA models, Little and Wu (1991) have a multiplicative

model.

In AN model applications reported in Hirano et al. (2001), imputation (via a MCMC

procedure) of the missing outcomes precedes the estimation of the joint distribution of in-

terest. This amounts to adopting the predictive modeling perspective of Little and Wu

(1991). In our application of the NGA model, we proceed with the estimation of the refla-

tion factors and the adjusted cell probabilities without engaging in computationally costly

imputation. Evidently the idea of using reflation factors to bring a possibly biased joint dis-

tribution in line with marginals that can be trusted is an old one, discovered by researchers

who work with cross-section data. An early example of this is Golan et al. (1994). Their

objective is to recover the elements of expenditure, trade, or income flows from limited or

incomplete multisectoral economic data using a similar set of adding up restrictions. Re-

cent papers framed within the attrition-refreshment sample framework include Nevo (2003),

Bhattacharya (2008), Deng et al. (2013), and Hoonhout and Ridder (2019). Nevo (2003)

and Bhattacharya (2008) cast the estimation problem in a familiar panel data framework

where the object of interest is a conditional expectation function (CEF) rather than the

joint distribution of outcomes. Nevo (2003) adopts a GMM procedure for estimation of the

attrition function and the unknown parameters of the CEF. Apart from providing a simpler

identification proof for the AN model Hirano et al. (2001), Bhattacharya (2008) proposes a

sieve-based estimation method and establishes the asymptotic properties of the estimator.

As we noted earlier, Deng et al. (2013) extend the AN model to three wave forward-looking
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panels with two refreshment samples. In the concluding section the authors offer a discussion

on initial non-response, what we have termed non-participation to distinguish it from attri-

tion and reverse attrition. They argue that the ignorability assumption may be too strong,

and view this as a gap in the literature. We believe that our discussion in Section 2.5 sheds

further light on the problem by separating what can, and cannot be modeled in a rotating

panel context. Hoonhout and Ridder (2019) extend the AN model to multi period panels

that suffer only from attrition. No useful insights emerge for relaxing the key AN/NGA

identifying assumption, namely ruling out interaction effects.

4 A Labor Economics Application

Our example is a familiar one from Labor Economics: correction of transition rates obtained

from balanced panels of the Household Labor Force Survey in Turkey (HLFS-Turkey). In

Table 3, we compiled a set of ML parameter estimates from a 3x3 NGA model for annual

transitions. In this example, x denotes the entire working age population, aged 15 and

over. The balanced panel contains over 20, 000 observations. The first and second period

marginals in the raw data contain over 52, 000observations. Thus it is not surprising that

all NGA model parameters are estimated extremely precisely.

As we noted earlier, the HLFS-Turkey sample frame ensures that about half of the

addresses visited in a given period are also visited the next period. Taking the sample sizes

Table 3: A 3×3 NGA Model - Parameter Estimates

Annual Transitions Between 2001-Q1 and 2002-Q1

x = age 15 and over

Parameter µ ρ1 ρ2 κ1 κ2

w(.) linear:

Estimate 0.8987 0.0955 0.2510 0.1315 0.1794

Std. error 0.0084 0.0196 0.0490 0.0202 0.0391

w(.) convex:

Estimate −0.1057 0.0956 0.2294 0.1293 0.1716

Std. error 0.0092 0.0192 0.0404 0.0195 0.0346

w(.) concave:

Estimate 0.0975 −0.0959 −0.2830 −0.1349 0.1902

Std. error 0.0076 0.0203 0.0635 0.0213 0.0456
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we reported above, we see that the balanced panel sample amounted to about 40% of the

respective marginals. The fact that this fraction is considerably lower than the expected 0.5

can be taken as a rough statistic that warns us about the magnitude of the attrition/reverse

attrition problem. In fact attrition in the HLFS-Turkey is quite severe as documented by

Tunalı (2009): Around 26% of eligible households and 32% of eligible individuals attrited

sometime during the observation window over the period 2000-2002. For the subset of

households headed by prime-age (20 – 54 years old) individuals which were designated for

four interviews, the cumulative probability of attrition was 8% by 3 months, 18.3% by 12

months, and 24.7% by 15 months. What matters, of course, is whether the process that

excludes individuals designated for the complete panel from the balanced panel is ignorable.

However, Wald tests provide overwhelming evidence that the attrition and reverse attrition

process is non-ignorable. Furthermore, alternatives to NGA model (MAR1 and MAR2)

are deemed inadequate for capturing the selectivity (all p–values are practically zero). The

key insight from labor economics, that attrition and reverse attrition behavior is intimately

connected with labor market behavior, is vindicated.

In Table 4, we compiled the set of reflation factor estimates utilizing the NGA model

parameter estimates reported in Table 3. For brevity we excluded the numbers for the

margins. The numbers reported in each cell are of the form given in Table 1: reflation

factor, times the balanced panel fraction. For each cell we report the estimates of the reflation

Table 4: A 3×3 NGA Model - Reflation Factors

Annual Transitions Between 2001-Q1 and 2002-Q1

x = age 15 and over

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0


0.8987

0.8997

0.8976

 0.5052


1.0302

1.0239

1.0367

 0.0566


1.0780

1.0681

1.0886

 0.0159 f ∗1 (0)

y1 = 1


0.9942

0.9900

0.9984

 0.0740


1.1257

1.1267

1.1248

 0.2952


1.1736

1.1753

1.1719

 0.0209 f ∗1 (1)

y1 = 2


1.1497

1.1316

1.1693

 0.0113


1.2812

1.2879

1.2741

 0.0122


1.3290

1.3434

1.3132

 0.0085 f ∗1 (2)

Col. sum f ∗2 (0) f ∗2 (1) f ∗2 (2) 1
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factors, w(.), associated with all three functional forms (respectively linear, convex, concave)

inside braces. The findings from our sensitivity analysis are typical, in that functional form

does not make much of a difference. The reflation factor estimates give us information about

the direction of the bias in a given cell of the unadjusted balanced panel. For generalized

attrition to be ignorable for a cell, its reflation factor estimate must be equal to 1. We find

that the null is rejected for six of the nine estimated reflation factors, at the 5 percent level of

significance. In the absence of correction, the non-participant to non-participant transition

is overestimated, while the participant to the participant transitions (in particular, outcomes

that involve unemployment) are underestimated. This is not surprising as it is more likely to

find non-participants than employed, and employed than unemployed in their old addresses

in subsequent visits.5

Table 5 provides the unadjusted joint probabilities and marginals obtained from the

balanced panel (shown in brackets) along with the adjusted versions obtained from the linear

NGA model. The magnitudes of the biases in the balanced panel [discrepancies between

f(y1, y2|A = 3, x) and f(y1, y2|x)] range between −25% and 11% percent. Six of the nice

cells have biases of 10% or more in absolute value.

Table 5: A 3×3 NGA Model - Adjusted and [Unadjusted] Joint and Marginal Probabilities

Annual Transitions Between 2001-Q1 and 2002-Q1

x = age 15 and over

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0
0.4540

[0.5052]

0.0584

[0.0566]

0.0172

[0.0160]

0.5296

[0.5778]

y1 = 1
0.0736

[0.0740]

0.3323

[0.2952]

0.0246

[0.0209]

0.4305

[0.3902]

y1 = 2
0.0130

[0.0113]

0.0156

[0.0122]

0.0113

[0.0085]

0.0399

[0.0320]

Col. sum
0.5406

[0.5905]

0.4063

[0.3640]

0.0531

[0.0454]
1

5In our broader investigation we applied the three versions of the NGA model on estimated quarterly and

annual transition data from the HLFS-Turkey and found similar patterns. We will be happy to share them

with interested parties.
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Table 6: A 3×3 NGA Model - Adjusted and [Unadjusted] Forward Transition Probabilities

Annual Transitions Between 2001-Q1 and 2002-Q1

x = age 15 and over

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0
0.8573

[0.8744]

0.1102

[0.0980]

0.0325

[0.0276]

1

[1]

y1 = 1
0.1710

[0.1898]

0.7719

[0.7565]

0.0571

[0.0537]

1

[1]

y1 = 2
0.3249

[0.3525]

0.3916

[0.3813]

0.2836

[0.2662]

1

[1]

In Table 6 the associated forward transition probabilities are shown. As in the previous

table, the numbers in brackets are the unadjusted ones. Almost surely someone who views

the evidence will argue that the differences between unadjusted and adjusted magnitudes

are not large enough to warrant correction. It is worth noting that even though the picture

of labor dynamics that emerges might not be different by some measure of closeness, the

correction is still warranted because it produces a version which is fully consistent with the

cross-section estimates. This capability of the NGA model is likely to be especially important

in the case of statistical agencies. The official position of TURKSTAT appears to be total

neglect of the short panel dimension of the HLFS-Turkey micro data on the grounds that

there is no weighting method that can reconcile dynamic and static estimates.

5 Conclusion

In this paper we tackle a generalized version of the attrition problem, typically associated

with data from rotating panels. The motivation for taking a fresh look comes from the

observation that many sustained large scale data collection efforts (the CPS, the EU-LFS,

and the EU-SILC being some well-known examples) involve multiple visits to the same

address/household over a fixed period (8 months in case of the CPS, up to four years in case

of the EU-SILC). A shared feature of these efforts is the use of a rotational design whereby a

fresh set of addresses/households are systematically added to, and excluded from the sample

frame according to a predetermined schedule. Consequently these data sets have short panel

components that support dynamic analyses. What stands in the way is the concern that the
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balanced panel used for tracking the dynamics may not be representative of the population

at any given point of time because of non-response after initial response (attrition) and

response after initial non-response (reverse attrition). In fact, reverse attrition is observed

to be as sizable as attrition in both the Household Labor Force Survey in Turkey we utilize,

and the CPS.

We propose a bias correction framework for rotating panels and adopt an empirical

likelihood approach that allows standard methods of inference. Our approach has several

attractive features. Firstly, it generates transition estimates consistent with the period-

specific marginals. Secondly, attrition behavior is allowed to be non-ignorable, in that it can

depend on endogenous outcomes in either period. Thirdly, correction in our model resem-

bles commonly used weighting methods in the literature on survey statistics. As such, it

amounts to reflating the balanced panel fractions (cell means) by factors expressed as para-

metric functions of the states under examination. Fourthly, correction can be implemented

conditional on exogenous observables, without imposing additional parametric assumptions.

Finally, the parametric functions that link the weights with the states allow tests of simpler

characterizations of generalized attrition.

In our empirical example, outcomes are labor market states occupied by an individual.

Endogeneity arises because particular labor market outcome combinations could make indi-

viduals more or less prone to exclusion from the balanced panel. Our empirical investigation

of annual transition data from the Household Labor Force Survey in Turkey shows that gen-

eralized attrition is a serious concern, in the sense that transition rates obtained from the

balanced panel are systematically distorted. Simpler models nested under ours that assume

attrition is completely ignorable, or ignorable either with respect to the first or the second

period outcomes are handily rejected. Based on our systematic empirical investigation, re-

sults did not display sensitivity to the parametric features of the NGA model. Thus the

linear version – which has a closed form solution and is extremely simple to implement –

appears suitable for empirical work. Yet another attractive feature of the NGA model is

the non-parametric treatment of covariates (such as sex, location, age groups, etc.). Each

distinct covariate combination is associated with its own set of parameters and reflation

factors.

In a nutshell, NGA model is designed to produce estimates of transition rates which are

consistent with cross-section statistics, conditional on covariates of interest. As such it is

likely to gain the approval of official statistical agencies. Furthermore, estimation does not

require micro data. To implement the adjustments, it is sufficient to have the joint frequency
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distribution obtained from the balanced panel that links the two legs of the short panel along

with the marginal frequency distributions obtained from representative data collected at each

leg. Since all of this information is readily available from statistical agencies in tabular form,

the proposed methodology should appeal to a very broad audience.
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Appendix

In this Appendix, we provide a proof of the uniqueness of the solution to the linear param-

eterization of the 3× 3 NGA model used in our labor market application.

Let Aj denote the 5 × 5 partition of the A matrix defined implicitly by equation (3.2)

with the jth row removed, and let bj denote the 5× 1 partition of vector b with the jth row

removed, j = 1, 2, ..6. With this notation, the system with the 6th equation removed can be

expressed as A6β = b6 and has the explicit form given below:

p0• 0 0 p01 p02

p1• p1• 0 p11 p12

p2• 0 p2• p21 p22

p•0 p10 p20 0 0

p•1 p11 p21 p•1 0

p•2 p12 p22 0 p•2





µ

ρ1

ρ2

κ1

κ2


=



f ∗1 (0)

f ∗1 (1)

f ∗1 (2)

f ∗2 (0)

f ∗2 (1)


.

It is straightforward to establish that rank(A6) = 5. Thus the solution to the reduced

system of equations is unique and is given by β̂ = A−1
6 b6. Next, we define the following

5× 5 pivot matrices:

E1 =



−1 −1 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


, E2 =



1 0 0 0 0

−1 −1 1 1 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


,

E3 =



1 0 0 0 0

0 1 0 0 0

−1 −1 1 1 1

0 0 1 0 0

0 0 0 1 0


, E4 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 1 1 −1 −1

0 0 0 1 0


,

E5 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 1 −1 −1


.
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It is also straightforward to show that for j = 1, 2, .., 5, EjAj = A6, and Ejbj = b6.

Since the pivot matrices are of full rank, this proves that all six systems are equivalent, and

yield the same unique solution β̂.
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